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1 Introduction
Consider the (possibly nonlinear) differential equation
B(t) + Ca(t) + g(t, x) = e(t), (1)

where C' is a constant; ¢ is continuous, continuously differentiable with respect to
x, and is periodic of period P in the variable t; e(t) is continuous and periodic of
period P. We are interested in determining initial conditions that guarantee the
solution of this equation to also be periodic of period P. By assuming that there
exist two continuous functions a(t) and b(t) and a positive integer n so that

n’ <a(t) < g—z(t, z) < b(t) < (n+1)? (2)

for all values of ¢ > 0, and n? < a(t), and b(t) < (n + 1)? on a subset of positive
measure of the interval [0, P], then there exist initial values z(0) = o* and £(0) = g*
so that the solution to this initial value problem is periodic of period P and is unique
with this property. (The continuity assumption on ¢ and b can be weakened to conti-
nuity almost everywhere.) Moreover, the proof of this can be made constructive, so
that starting at any initial conditions z(0) = « and #(0) = 8, we can produce a path
of initial values starting at (c«, 8) in the phase plane and terminating at (a*, 5*) and
a homotopy that continuously deforms the starting solution to the unique periodic
solution. This is a result of Li and Shen [3]. We will discuss both the proof of this
theorem and a Mathematica implementation.

The idea of the proof is as follows. We write the solution to the initial value
problem having (x(0),£(0)) = (a, 8) as x = z(t,v) where v = (o, ). Define

f) = (x(P,v), &(P,v))"

and set

Fv) =v— f(v).
Observe that the desired initial conditions for a periodic solution form a fixed point
for f and a zero point for F. Note both f and F are C! differentiable functions
with respect to t. We want to show that F is a homeomorphism from IR* to IR%.
This will guarantee that F' has a unique zero and thus the theorem follows.

Linearizing equation (1), we compute its fundamental solution matrix Y (¢) and
show that

dF
W) =T-Y(),

where I is the 2 x 2 identity matrix. The bounds given in (2) yield a bound on
the eigenvalues of the matrix 47 (v). This shows that % (v) is invertible and hence
|4 (v)~!|| exists and is finite. By Hadamard’s Theorem [4], this is sufficient to

imply that F' is a homeomorphism.



2 Invertibility

Linearizing equation (1), we turn it into a system by setting y = 4 and taking partial

derivatives we have
. 0 1
. ]=1 Jg B (3)
Y pe (t,z) —C y

which has the fundamental solution matrix

¢ 0 1
Y(t) = Easp[/o (—g—i(s,x) _C)ds]

( 0 t )
= FEuxp| B ¢ @ B ]
. (s,z)ds —Ct

Next, we let u = (z,y)”, and observe that

= 0 (R(t,u(t,v)) + E(t))

%
_ %(R(t,u(t, v)),
where
R(t,u(t,v)) = ( —Cy —yg(t, z) >
and

It follows that

Ok O,
or Oy

oR, oR,




and thus OR/0u formally satisfies equation (3). Hence

0x(t,¥) 0x(t,v)
ou _ da B
oa op

is also a fundamental matrix for equation (3). This permits us to represent 47 (v)
as

ox(t,v) 0x(t,?) 1 0x(t, V) 0x(t, V)
I — da ap — Oa o
o&(t,v) 0x(t,v) | — 0z (t, V) L o0z (t, V)
o ap da s

Li and Shen [3] obtain a lower bound for all the eigenvalues of (%= (v))? by taking
the minimum of the four positive values

{4sin®(VmA/2),4sin*(V2PB/2),[1 — e ™%, [1 — e 4/}

where
P P
2#P</a@ﬁ:A§B:/b@ﬁ<ﬂme
0 0
This implies 95 (v) is invertible.

3 The Analytic Proof

By solving the initial value problem corresponding to each («, ) defined by the
curve F(v) — (1 — 6)F(vg) = 0, we create a sequence of functions y(d) starting at
(x(t,v0),2(t,v0)) that deforms into (zp(t),Zp(t)). Here we prove that v(d) forms a
continuous deformation to (zp(t),Zp(t)).

Proof. The continuous dependence of (z(t,v),%(t,v))T on the initial conditions
v = (a, B) discussed in [1] allows us to differentiate z(¢) and & (t) with respect to v.
Thus we must have a continuous relation between the initial values of the differential
equation and the solution of the differential equation. Now since the linear homo-
topic path produces a continuous deformation of points (¢, 8); to (a, 3)*, our solu-
tions z(¢,v;) form a continuous deformation to the periodic solution zp(t,v*). O

We would like to know if we can find v’s that satisfy
Flv)—(1—=0)F(v) =0

for all § between 0 and 1. To do this we take the derivative of F'(v) — (1 — §)F(vp)
with respect to ¢ and form the initial value problem (4).
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Figure 1: Continuous Deformation of z(t, v;)

Y

{ V(6) = F'(0) (), ”

By showing the existence of a solution to the IVP (4) for 0 < § < 1, we will have
also shown the existence of our desired path [0, 1] — IR* defined by y(§) = v where
v satisfies F(v) — (1 — §)F(v) = 0. Li and Shen show this in Theorem 2 of [3]
by applying an existence and uniqueness theorem to (4) to obtain a solution for
d € [0, €] and using analytic continuation to extend the solution over [0, 1].

4 The Constructive Proof
(a0, Bo) (a*, B%)
(ak, Br)

Tangent line at (o, Bk)
(OA‘ka /Bk)
\ Correction Steps

(ak+1, Br41

z(t)

Figure 2: Path of initial positions in the phase plane



Define y(d) to be the desired path of initial points in the phase plane where
§ € [0,1], v(0) = (a, By)" and (1) = (a*, B*)T, and let

(v,6) = F(v) — (1 - 8)F(v)

Instead of solving (4) to generate y(d), we differentiate I'(v,d) with respect to
the arc length (since we now know the arc exists) and obtain the equivalent initial
value problem

dl'(a(s), B(s),0(s))/ds = 0, (5)
a(0) = ap, B(0) =By, 4(0) =0.

The advantage of considering (5) is that arc length gives us ||(¢/(s), 8'(s), 8'(s))|| = 1,
thus allowing us to solve the 2 X 3 system:

di._ ol'dv 0U'dd OF

E_%E—F%%_@—aal( ) 8ﬁﬁ( )+F(U0)5I(S):

(, Ty oIy Iy o (s)
da 0B 06 0
"(s) | = :
< o'y, o'y 0ol 0 (6)
da 0B 05 &' (s)
| @(0) =g, B(0) =By, 6(0)=0.

Evaluating these partial derivatives we obtain the system

1- g_z _g_/:; aO_x(p:a0760) a(S) 0
9 9 Bs) | = ,
\ 9T 9T e 0 (7)
%0 a8 Bo — &(p, @, Bo) 5(s)
\ a(0) = ag, B(0) = Bo, 6(0) = 0.

We can compute z(t, «, ) numerically using Mathematica’s NDSolve, and use cen-

: : - - - Oz Oz O Ow
tral difference derivative approximations to compute 3%, 56 da> and Once we

have (d,B,5) we use Eulers method to find (a1, f1,01). This point, however, may
not satisfy I'(v,6) = F(v) — (1 — 6)F(vy) due to Euler’s low order approximation.
We can correct our approximation with a sequence of Newton’s steps by fixing ¢



and obtaining points of the form v, = v, 1 — I"(v,_1,0) "' (v, _1,d), with

_ oz Oz
oo op
PI(’Un_l) =
oz, Oz
oo op

until our Newtons method sequence converges, giving us I'(v,,d) = F(v,) — (1 —
0)F(vg). After finding a new point on the path we make our next Euler’s Approxi-
mation and continue until 7 = 1.

In certain parts of the path Newton’s method may fail to converge for Euler’s step
size. We insure convergence by halving the step size for Euler’s method whenever
IT (va—1)||/]IT (vn)|] < 10 for two points along the Newton sequence. This way,
Newton’s method must produce points v, such that ||[I'(v,)|| — 0. On the other
hand, we double our step size after Newton’s method converges, thus allowing us to
speed up our algorithm when the I' is well behaved.

5 Implementation

We have implemented this algorithm using the computer algebra system Mathe-
matica, using it’s differential equation solver NDSolve with working precision 26 to
emulate double precision arithmetic for our computations. We found single preci-
sion arithmetic to work for linear cases, but in the nonlinear cases double precision
arithmetic was necessary.
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